Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization

نویسندگان

  • Hui Zhang
  • Paul A. Yushkevich
  • James C. Gee
چکیده

In this paper, we present a novel deformable registration algorithm for diffusion tensor MR images that enables explicit optimization of tensor reorientation. The optimization seeks a piecewise affine transformation that divides the image domain into uniform regions and transform each region affinely. The objective function captures both the image similarity and the smoothness of the transformation across region boundaries. The image similarity enables explicit orientation optimization by incorporating tensor reorientation, which is necessary for warping diffusion tensor images. The objective function is formulated in a way that allows explicit implementation of analytic derivatives to drive fast and accurate optimization using the conjugate gradient method. By explicitly optimizing tensor reorientation, the algorithm is designed to take advantage of similarity measures comparing tensors as a whole. The optimal transformation is hierarchically refined in a subdivision framework. A comparison with affine registration for inter-subject normalization of 8 subjects shows that the proposed algorithm improves the alignment of several major white matter structures examined: the anterior thalamic radiations, the inferior fronto-occipital fasciculi, the corticospinal/corticobulbar tracts and the genu and the splenium of the corpus callosum. The alignment of white matter structures is assessed using a novel scheme of computing distances between the corresponding fiber bundles derived from tractography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DTI-DROID: Diffusion tensor imaging-deformable registration using orientation and intensity descriptors

This article presents a method (DROID) for deformable registration of diffusion tensor (DT) images that utilizes the full tensor information by integrating the intensity and orientation features into a hierarchical matching framework. The intensity features are derived from eigen value based measures that characterize the tensor in terms of its different shape properties, such as, prolateness, ...

متن کامل

Diffusion Tensor Image Registration Using Tensor Geometry and Orientation Features

This paper presents a method for deformable registration of diffusion tensor (DT) images that integrates geometry and orientation features into a hierarchical matching framework. The geometric feature is derived from the structural geometry of diffusion and characterizes the shape of the tensor in terms of prolateness, oblateness, and sphericity of the tensor. Local spatial distributions of the...

متن کامل

Diffusion-tensor image registration

In this chapter, we introduce the problem of registering diffusion tensor magnetic resonance (DT-MR) images. The registration task for these images is made challenging by the orientational information they contain, which is affected by the registration transformation. This information about orientation and other aspects of the diffusion tensor are exploited in the development of similarity meas...

متن کامل

Determining Cardiac Fiber Orientation Using FSL and Registered Ultrasound/DTI volumes.

Accurate extraction of cardiac fiber orientation from diffusion tensor imaging is important for determining heart structure and function. However, the acquisition of magnetic resonance (MR) diffusion tensor images is costly and time consuming. By comparison, cardiac ultrasound imaging is rapid and relatively inexpensive, but it lacks the capability to directly measure fiber orientations. In ord...

متن کامل

Orientation matching for diffusion tensor image registration

This thesis develops a registration algorithm specifically for diffusion-tensor (DT) im­ ages. The proposed approach matches the tensor orientations to find the registration transformation. Early results show that local optimisation does not find the global minimum in registration of DT-MR brain images. Therefore, a global optimisation re­ gistration technique is also implemented. This thesis p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 8 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005